

Next Generation Space Telescope (NGST)

Presented by

John C. Mather Project Scientist

- 8m primary mirror
- 0.6-28 μm wavelength range
- 5 year mission life (10 year goal)
- passively cooled to <50K
- L2 orbit
- 3 Core instruments
 - 0.6-5 μm camera
 - 1-5 μm Multiobject Spectrometer
 - 5-28 μm camera/spectrometer
- 2009 launch

Logical successor to HST

Key part of the Origins Program

Mission

Mather Munich SPIE.pp

Strategic Partnerships

15% Observing Time

Canadian Space Agency

5% Observing Time

Department of Defense

Lightweight Mirror Technologies

A NASA Origins Mission

0

p.

0

800

0

ø

C)

NGST Selects Lockheed and TRW for Phase 1

NEXUS tech demo by 2004

- Key features
 - 3 AMSD high-authority active optics (2 deployable)
 - Fixed secondary tower
 - Wavefront sensing and control

Petals Deployed

Baffle **Deployed**

3.0m

A NASA Origins Mission

GST

Discovery Space for NGST

to. 0 0 o oi œ.

NGST & the Early Universe

Galaxy assembly

 $\sim 10^{-5}$

Galaxies, stars, planets, life

- When and how do the first stars and galaxies form?
 - Very luminous star forming regions/galaxies at 10^9 yr, $z \sim 5.6$)
 - New stars forming at constant rate until very recently (1 < z < 5)
 - SCUBA sees dust-hidden star formation
- To see the growth of galaxies such as Milky Way, need NGST (0.6-10µm)
 - Sensitivity to see the first star formation, $(z \sim 10-20, 0.1 \text{ nJy})$
 - **Angular resolution & wide field** to survey 10^5 protogalaxies (to z ~ 5)
 - MIR imaging and spectroscopy to see hidden stars and AGN

The Structure and Chemistry of the Universe

- How did the Universe form? What is it made of?
 - Supernovae support an accelerating universe (~0.8)
 - Cluster X-rays & strong lensing supports a low density universe
 (~0.2)
 - CMB missions (MAP, Planck) will measure small scale temperature variations 300,000 years after the Big Bang (z \sim 1100) to constrain cosmological parameters ($_{\rm m}$, , H₀, S-Z effect)
- NGST provides direct astronomical evidence of the growth of structure and cosmological dimming (at Z ~ 1-5)
 - HST-like resolution, wide field of view enable statistical masses of galaxies, clusters and larger structures on scales from galaxies to galaxy superclusters (from 0.1-10 Mpc, weak lensing)
 - Type Ia and Type II supernovae (to Z>5) provide independent complementary constraints on the expansion and chemical evolution of the Universe
 - Connects directly with study of early galaxies: distances, masses, luminosities, etc.

NGST Deep Imaging: 0.5–10 µm

ASWG: Simon Lilly

4'x4' deep survey field 5000 galaxies to $AB \sim 28$, 10^5 galaxies to $AB \sim$ 34, photometry, morphology & z's

Depth: AB ~ 34 in 10^6 s

Redshifts: Lyman to z = 40 (?)

4000 Å to z = 10

NGST will detect 1 $M_s^{}\,$ yr $^{\!\!\!\!1}$ for 10^6 yrs to z

20 and 10 $^8\,M_s^{}$ at 1 Gyr to z $\,$ 10

(conservatively assuming = 0.2)

The Physics of Star and Planet Formation -- *Making a Home for Life*

- Are planetary systems like our Solar System common? How do they form? Is the chemistry of the Interstellar Medium important in the creation of life?
- To address these complex questions, observations on all scales and many wavelengths must be knit together with theory
- NGST will play an important role with its near- and mid-infrared capabilities by:
 - Determining the physics of star formation: the assembly of stars and proto-planetary disks from cloud cores
 - Imaging and doing atmospheric studies of Jupiter-sized planets at similar (5 AU) distances around nearby stars (50 candidates within 8 pc, needs a simple MIR Lyot stop)
 - Inventorying the prebiotic materials in starforming systems

John C. Mather, March 31, 2000

Mather_Munich_SPIE.ppt

10

Evolution of Planetary Systems

Vega Disk Detection

Flux*
Contrast (µm) (µJy)
Star/Disk

 $11 \mu m \quad 2.4 \quad 1.5 \times 10^7$

 $22 \mu m \quad 400 \quad 2x10^4$

Reflected & emitted light detected with a simple coronograph.

*per Airy disk

NGST resolution at 24µm = 5 AU at Vega, > 10 pixels across the inner hole

NGST, NNGST, & Extrasolar Planets

From Angel & Woolf 1998, in Science with the NGST, ASP, 133, 172

- Control of primary only:
 - Jupiter at 10 < < 20μm
- Active wavefront correction to 30 nm rms
 - Direct detection ofJupiter > 0.4 µm

Not a baseline program, but a natural upgrade issue for future missions such as TPF or an NNGST.

A NASA Origins Mission

ם

0

Science Instruments

Integrated Science Instrument Module (ISIM) -- cold instrument module and data system

- Objective
 - Procure instruments from US/international science community
 - GSFC to integrate flight qualified science instruments, optics, thermal control, electronics into ISIM, deliver to prime as GFE
- Status
 - 16 studies completed
 - Science Team recommendations
 - International negotiations ongoing

16 Instrument Studies

- 3 Instrument Suites -- Arizona, ESA, NASA
- 1 NIR Camera -- Colorado
- 3 Imaging FTS -- UC/Berkeley, ESA, CSA
- 3 NIR Spectrographs -- STScI, ESA, CSA
- 2 MIR Camera/Spectrographs -- JPL, ESA
- 2 Visible Cameras -- CSA, ESA
- 2 Coronagraphs -- JPL, ESA
- Study Reports and supporting documents at http://www.ngst.nasa.gov/science/isimpage.html

Recommended Instruments

- 4' x 4' NIR Cam (8k x 8k pixels)
 - Nyquist sampled at 2 µm, 0.6-5 µm, R~100 grism mode
 - First light, gal. form, dark matter, SNe, young stars, KBOs, stellar pops
- 3' x 3' NIR *R*~1000 MOS
 - Simultaneous source spectra(100), 1-5 µm
 - Gal form./diag. (clustering, abun., star form., kinematics), AGN, young stellar clusters (IMF/stellar pops)
- 2' x 2' Mid IR Cam/R~1500 spectrograph
 - Nyquist sampled at ~10 µm, 5-28 µm, grisms & slit
 - Physics of old stars at high redshift, $z\sim5$ obscured star form. & AGN to $z\sim5$, PAH to $z\sim5$, H to $z\sim15$, cool stellar IMF, protostars and disks, KBO sizes, comets

4th Instruments that would significantly enhance NGST capabilities to meet science goals

- NIR *R*=3000-5000 psf-sampled spect.
 - 0.1" angular resolution, ~2" x 2" FOV
 - 2d for single, extended object spectroscopy
- 0.6 1 | Lm camera (sampling diffraction spike)
 - ~0.01" angular resolution, 1'x 1'FOV
 - (Note-- assumes NIRCAM has 0.6 µm capability)
 - stellar pops/WD cooling curve, circumstellar disks, high z gal.
 Morphology
- MIR R=3000-5000 psf-sampled spect.
 - 0.3" angular resolution, 2" x 2" FOV, 5-28.3 μ m
 - Instead of R~1500 add-on spectrograph to MIR camera

 $\overline{\omega}$

Detector Technology

• Objective -- develop Near IR (0.6 - 5 μ m, 4k x 4k) and Mid IR (5 - 10+ μ m, 1k x 1k) focal planes

- Yardstick concept utilizes five 16.8 Mpixel FPAs

• Status

- 6 competitively selected technology contracts underway
- Large format cryo readouts and packaging
- Short HgCdTe shows good visible performance (> 50% uncoated)

Courtesy of Ball Aerospace

- Si: As IBCs show 10% reduction in noise relative to SIRTF

Courtesy of J. Hester, P. Scowen (ASU) & J. Morse (U.CO)

Conclusions

- NGST gives huge advance in observing capabilities
- NGST can observe
 - Acceleration/deceleration of expanding universe
 - Effects of cosmic dark matter
 - First luminous objects after Big Bang, even if much smaller than galaxies
 - Initial creation of heavy elements
 - Protogalaxies merging into large galaxies
 - First release of dust from first stars
 - Deep into active galactic nuclei
 - Individual stars in distant galaxies
 - Interstellar gas and dust
 - Recent formation of stars and planets
- It's very difficult but well worth the effort